25,545 research outputs found

    Minimally Allowed Neutrinoless Double Beta Decay Rates From Approximate Flavor Symmetries

    Full text link
    Neutrinoless double beta decay (ββ0ν\beta\beta0\nu) is among the only realistic probes of Majorana neutrinos. In the standard scenario, dominated by light neutrino exchange, the process amplitude is proportional to meem_{ee}, the e−ee-e element of the Majorana mass matrix. Naively, current data allows for vanishing meem_{ee}, but this should be protected by an appropriate flavor symmetry. All such symmetries lead to mass matrices inconsistent with oscillation phenomenology. I perform a spurion analysis to break all possible Abelian symmetries that guarantee vanishing ββ0ν\beta\beta0\nu rates and search for minimally allowed values. I survey 230 broken structures to yield meem_{ee} values and current phenomenological constraints under a variety of scenarios. This analysis also extracts predictions for both neutrino oscillation parameters and kinematic quantities. Assuming reasonable tuning levels, I find that mee>4×10−6m_{ee}>4\times 10^{-6} eV at 99% confidence. Bounds below this value might indicate the Dirac neutrino nature or the existence of new light (eV-MeV scale) degrees of freedom that can potentially be probed elsewhere.Comment: 19 Pages, 4 .eps Figures, 3 Table

    Thermally conducting electron transfer polymers

    Get PDF
    New polymeric material exhibits excellent physical shock protection, high electrical resistance, and thermal conductivity. It is especially useful for electronic circuitry, such as subminiaturization of components and modular construction of circuits

    Shear-induced crystallization of a dense rapid granular flow: hydrodynamics beyond the melting point?

    Full text link
    We investigate shear-induced crystallization in a very dense flow of mono-disperse inelastic hard spheres. We consider a steady plane Couette flow under constant pressure and neglect gravity. We assume that the granular density is greater than the melting point of the equilibrium phase diagram of elastic hard spheres. We employ a Navier-Stokes hydrodynamics with constitutive relations all of which (except the shear viscosity) diverge at the crystal packing density, while the shear viscosity diverges at a smaller density. The phase diagram of the steady flow is described by three parameters: an effective Mach number, a scaled energy loss parameter, and an integer number m: the number of half-oscillations in a mechanical analogy that appears in this problem. In a steady shear flow the viscous heating is balanced by energy dissipation via inelastic collisions. This balance can have different forms, producing either a uniform shear flow or a variety of more complicated, nonlinear density, velocity and temperature profiles. In particular, the model predicts a variety of multi-layer two-phase steady shear flows with sharp interphase boundaries. Such a flow may include a few zero-shear (solid-like) layers, each of which moving as a whole, separated by fluid-like regions. As we are dealing with a hard sphere model, the granulate is fluidized within the "solid" layers: the granular temperature is non-zero there, and there is energy flow through the boundaries of the "solid" layers. A linear stability analysis of the uniform steady shear flow is performed, and a plausible bifurcation diagram of the system, for a fixed m, is suggested. The problem of selection of m remains open.Comment: 11 pages, 7 eps figures, to appear in PR

    Fluctuations and the Effective Moduli of an Isotropic, Random Aggregate of Identical, Frictionless Spheres

    Full text link
    We consider a random aggregate of identical frictionless elastic spheres that has first been subjected to an isotropic compression and then sheared. We assume that the average strain provides a good description of how stress is built up in the initial isotropic compression. However, when calculating the increment in the displacement between a typical pair of contaction particles due to the shearing, we employ force equilibrium for the particles of the pair, assuming that the average strain provides a good approximation for their interactions with their neighbors. The incorporation of these additional degrees of freedom in the displacement of a typical pair relaxes the system, leading to a decrease in the effective moduli of the aggregate. The introduction of simple models for the statistics of the ordinary and conditional averages contributes an additional decrease in moduli. The resulting value of the shear modulus is in far better agreement with that measured in numerical simulations

    Improved thermally conducting electron transfer polymers

    Get PDF
    Development of polymers with improved heat transfer coefficients for use in encapsulating electronic modules is discussed. Chemical reactions for synthesizing the polymers are described and thermodynamic and physical properties are analyzed

    Decuplet baryon magnetic moments in a QCD-based quark model beyond quenched approximation

    Get PDF
    We study the decuplet baryon magnetic moments in a QCD-based quark model beyond quenched approximation. Our approach for unquenching the theory is based on the heavy baryon perturbation theory in which the axial couplings for baryon - meson and the meson-meson-photon couplings from the chiral perturbation theory are used together with the QM moment couplings. It also involves the introduction of a form factor characterizing the structure of baryons considered as composite particles. Using the parameters obtained from fitting the octet baryon magnetic moments, we predict the decuplet baryon magnetic moments. The Ω−\Omega^- magnetic moment is found to be in good agreement with experiment: μΩ−\mu_{\Omega^-} is predicted to be −1.97μN-1.97 \mu_N compared to the experimental result of (−-2.02 ±\pm 0.05) μN\mu_N.Comment: 19 pages, 2 figure

    An analysis of the gust-induced overspeed trends of helicopter rotors

    Get PDF
    Equations for analyzing the potential gust-induced overspeed tendency of helicopter rotors are presented. A parametric analysis was also carried out to illustrate the sensitivity of rotor angular acceleration to changes in rotor lift, propulsive force, tip speed, and forward velocity

    Intravenous versus subcutaneous drug administration. Which do patients prefer? A systematic review

    Get PDF
    BACKGROUND: Intravenous (IV) drug delivery is commonly used for its rapid administration and immediate drug effect. Most studies compare IV to subcutaneous (SC) delivery in terms of safety and efficacy, but little is known about what patients prefer. METHODS: A systematic review was conducted by searching seven electronic databases for articles published up to February 2014. Included studies were randomized controlled trials (RCTs) and/or crossover designs investigating patient preference for SC versus IV administration. The risk of bias in the RCTs was determined using the Cochrane Collaboration tool. Reviewers independently extracted data and assessed the risk of bias. Any discrepancies were resolved by consensus. RESULTS: The search identified 115 publications, but few (6/115) met the inclusion criteria. Patient populations and drugs investigated were diverse. Four of six studies demonstrated a clear patient preference for SC administration. Main factors associated with SC preference were time saving and the ability to have treatment at home. Only three studies used study-specific instruments to measure preference. CONCLUSIONS: Results suggest that patients prefer SC over IV delivery. Patient preference has clearly been neglected in clinical research, but it is important in medical decision making when choosing treatment methods as it has implications for adherence and quality of life. If the safety and efficacy of both administration routes are equivalent, then the most important factor should be patient preference as this will ensure optimal treatment adherence and ultimately improve patient experience or satisfaction. Future drug efficacy and safety studies should include contemporaneous, actual patient preference where possible, utilizing appropriate measures

    The use of a simplified structural model as an aid in the strain gage calibration of a complex wing

    Get PDF
    The use of a relatively simple structural model to characterize the load responses of strain gages located on various spars of a delta wing is examined. Strains measured during a laboratory load calibration of a wing structure are compared with calculations obtained from a simplified structural analysis model. Calculated and measured influence coefficient plots that show the shear, bending, and torsion characteristics of typical strain gage bridges are presented. Typical influence coefficient plots are shown for several load equations to illustrate the derivation of the equations from the component strain gage bridges. A relatively simple structural model was found to be effective in predicting the general nature of strain distributions and influence coefficient plots. The analytical processes are shown to be an aid in obtaining a good load calibration. The analytical processes cannot, however, be used in lieu of an actual load calibration of an aircraft wing
    • …
    corecore